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Abstract

LiDAR-based outdoor 3D object detection has received
widespread attention. However, training 3D detectors from
the LiDAR point cloud typically relies on expensive bound-
ing box annotations. This paper presents OC3D, an innova-
tive weakly supervised method requiring only coarse clicks
on the bird’s eye view of the 3D point cloud. A key challenge
here is the absence of complete geometric descriptions of the
target objects from such simple click annotations. To address
this problem, our proposed OC3D adopts a two-stage strat-
egy. In the first stage, we initially design a novel dynamic and
static classification strategy and then propose the Click2Box
and Click2Mask modules to generate box-level and mask-
level pseudo-labels for static and dynamic instances, respec-
tively. In the second stage, we design a Mask2Box mod-
ule, leveraging the learning capabilities of neural networks
to update mask-level pseudo-labels, which contain less infor-
mation, to box-level pseudo-labels. Experimental results on
the widely used KITTI and nuScenes datasets demonstrate
that our OC3D with only coarse clicks achieves state-of-the-
art performance compared to weakly-supervised 3D detec-
tion methods. Combining OC3D with a missing click min-
ing strategy, we propose an OC3D++ pipeline, which requires
only 0.2% annotation cost in the KITTI dataset to achieve per-
formance comparable to fully supervised methods. The code
will be made publicly available.

Introduction
In recent years, notable progress has been made in LiDAR-
based 3D object detection research (Wu et al. 2023). De-
spite these advancements, the need for precise bounding
box supervision remains a major challenge due to its time-
consuming and labor-intensive nature. For instance, the
KITTI dataset (Geiger, Lenz, and Urtasun 2012) contains
3,712 training scenes with over 15,000 vehicle instances,
where manual annotation of a single instance can take
roughly 114 seconds (Meng et al. 2021). The extensive la-
beling efforts required escalate dramatically when scaling
detectors to larger-scale datasets (Sun et al. 2020; Caesar
et al. 2020), thereby hindering further research in a fully su-
pervised manner.

To alleviate the annotation burden, recent studies have ex-
plored alternatives that require fewer annotated frames or in-
stances to train high-performing 3D object detectors. Specif-
ically, semi-supervised methods (Wang et al. 2021) leverage

a subset of the annotated frames, while sparsely-supervised
methods (Xia et al. 2023; Liu et al. 2022; Xia et al. 2024)
rely on only one bounding box annotation per frame during
training. While these approaches have significantly lowered
annotation costs, annotating 6DoF bounding boxes for every
scene remains time-consuming.

To provide a faster, albeit less precise, method of human
supervision, WS3D (Meng et al. 2021) and ViT-WSS3D
(Zhang et al. 2023) propose a mixed supervision strategy that
replaces some box annotations with the center-click annota-
tions. In this approach, annotators click the center of objects
on the Bird’s Eye View (BEV) to generate center-level la-
bels, reducing labeling time per instance to approximately
2.5 seconds, which is 50 times faster than traditional bound-
ing box labeling.

However, relying on a single center point has significant
limitations: (1) it requires annotators to precisely indicate
the center position and (2) it fails to accurately represent the
shape and scale of objects, especially in sparse point clouds
where objects may be partially observed. These challenges
become even more severe for moving objects, where motion
across frames further complicates the estimation of an accu-
rate bounding box from clicks. As a result, prior works have
struggled to scale up the use of click supervision, combined
with traditional box annotation for mixed supervision, which
diminishes the overall effectiveness.

In this paper, we introduce a novel pure click-supervised
approach for 3D object detection (OC3D), which employs
temporal cues to distinguish between static and moving in-
stances and progressively recover their box supervision from
coarse clicks (Fig. 1 (b)) for detector training. This strat-
egy offers greater flexibility than center-clicked approaches
by accommodating inaccurate clicks through shift tolerance,
which can be corrected via multiple-frame consistency. Our
framework comprises three key designs: (1) To efficiently
classify the motion state of provided clicks, we analyze the
point density at the clicked location from a statistical per-
spective, noting that vary point density over a short pe-
riod for moving objects while stable density for static in-
stances. (2) For static objects, we implement a Click2Box
strategy that aggregates the neighboring points across multi-
ple frames to reconstruct the object’s structure and lift click-
level supervision to a precise 3D box. (3) For moving ob-
jects, which are more challenging to regress, we generate
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Figure 1: (a) 6DoF box annotation; (b) Unlike costly box annotations, coarse-click alternatives require only quick clicks on
objects in the 2D BEV plane, yet offer limited supervision; (c) An empirical study on maximizing the utility of weak click labels
reveals significant performance gains when separating static and dynamic objects (yellow bars) compared to directly estimating
3D bounding boxes from clicks (blue bars) or discarding pseudo labels for dynamic objects (orange bars). The proposed OC3D
(green bars) further refines label quality via Mask2Box conversion, substantially enhancing detection performance by 17%.

mask-level pseudo labels (Click2Mask) to assign the clus-
tered points with labels, enabling models to learn to predict
the object’s location. To compensate for the lack of supervi-
sion in predicting shapes and scales for moving objects, we
leverage their geometric similarity as a bridge, further refin-
ing the 3D box through a Mask2Box process. We evaluated
OC3D on the widely adopted KITTI and nuScenes datasets.
Remarkably, OC3D achieves competitive performance with
weakly-supervised baselines that rely on accurate box anno-
tations.

In summary, our contributions are:

• We propose the first method of only click annotated 3D
object detection from point cloud (OC3D), which solely
relies on coarse clicks on the BEV maps. This approach
dramatically reduces the annotation cost of 3D object de-
tection tasks to 1% ∼ 0.2%.

• We design the Click2Box and Click2Mask modules ac-
cording to the motion attributes of instances, inferring ac-
curate mixed supervision information from the click an-
notations.

• We design a Mask2Box module that upgrades the less
informative mask-level pseudo labels to box-level pseudo
labels, which compensates for the loss of object shape and
scale information in mask-level supervision.

Related Work
LIDAR-based 3D Object Detection. In recent years,
fully-supervised 3D object detection has been widely stud-
ied. The early methods (Lang et al. 2019; Yan, Mao, and
Li 2018; Yin, Zhou, and Krähenbühl 2021) utilized an end-
to-end one-stage object detection strategy, predicting detec-
tion boxes directly from point clouds. Subsequently, the two-
stage methods (Shi, Wang, and Li 2019; Deng et al. 2021;
Shi et al. 2023; Wu et al. 2022; Chen et al. 2023; Wang
et al. 2024) introduced an additional proposal box refine-
ment stage, which improves detection performance by refin-
ing regions of interest. Despite achieving excellent perfor-

mance, all these methods require costly box annotations, the
generation of which is time-consuming and labor-intensive.

Label-efficient 3D Object Detection. Research on reduc-
ing annotation costs in 3D object detection tasks has re-
ceived widespread attention. Around semi-supervised meth-
ods (Wang et al. 2021), they selected only a small number
of fully annotated frames as labeled data, using the remain-
ing frames as unlabeled data. These methods used teacher-
student networks for distillation learning to mine and gen-
erate pseudo-labels. Sparsely-supervised methods (Xia et al.
2023; Liu et al. 2022) adopted a sparsely annotated strategy,
retaining only one complete bounding box label for each
selected frame. They utilized specially designed unlabeled
object mining modules to discover potential pseudo-labels.
Although these strategies have significantly reduced the de-
pendence on 3D boxes, it is still not possible to completely
abandon laborious box-level annotations.

Proposed Solution
Overview As shown in Fig. 2, given the coarse nature of
click supervision, our approach proceeds by first (1) gener-
ating mixed-granularity supervision for both static and mov-
ing objects using the Click2Box and Click2Mask strategies,
followed by (2) applying Mask2Box-enhanced self-training
to refine and improve the quality of generated supervision.
The specific steps involved in this process are elaborated as
follows.

Mixed Pseudo-Label Generation
To accurately estimate 3D bounding boxes from click anno-
tations as pseudo labels, we aim to leverage temporal cues
to enrich sparse point annotations by aggregating registered
points across consecutive frames. For static instances, the
aggregation of dense points facilitates the complete capture
of spatial geometric information of the instance. However,
for dynamic objects, the dense point aggregation often fails
to capture the full geometric structure, leading to low-quality
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Figure 2: The pipeline of the proposed OC3D. (a) Initially, a novel motion state classification strategy is introduced, followed
by the generation of mask-level pseudo-label Am and box-level pseudo-label Ab, utilizing the Click2Mask and Click2Box
modules, respectively. (b) With the mixed pseudo-labels generated by stage (a), train the detector and then update the mask-
level supervision to box-level based on high-confidence predictions of the trained detector.

pseudo-labels. This challenge motivates us to first classify
the motion status of instances corresponding to each anno-
tation click:

Motion State Classification for Clicked-instance. We
observe the duration of local point distribution at clicked
positions during a long sequence traversal. Specifically, for
static instances, the local point cloud at the clicked position
exhibits a continuous distribution, whereas, for dynamic in-
stances, the local point cloud at the clicked position is tran-
sient throughout the traversal. Motivated by this, we utilize
the persistence of points at local positions within the long
sequence for dynamic and static classification.

For each click annotation co = (xo, yo) at the t-th frame,
we gather adjacent frames F = {ft−k, ..., ft, ..., ft+k}
within a local time window k, followed by ground re-
moval (Himmelsbach, Hundelshausen, and Wuensche 2010)
as a preprocessing step. Our primary focus is on the BEV
points in F , denoted as {PBEV

t ∈ RN×2}t∈[t−k,t+k], where
N indicates the number of BEV points in each frame. To
determine the persistence of the clicked position (xo, yo),
we search for its neighboring BEV points within a radius r,

resulting in the collection {Nt}t∈[t−k,t+k], with each time
step having a cardinality of Nt:

Nt =
{
pi ∈ PBEV

t | ∥pi − co∥2 ≤ r
}
, Nt = |Nt| . (1)

To better tally the duration for which points are contin-
uously present near the clicked location, we construct the
function g(t), and perform a differentiation operation on
g(t):

g(t) =

{
0 if Nt = 0;

1 otherwise.
(2)

∆g(t) = g(t+ 1)− g(t). (3)

In adjacent T frames (T = 2k + 1), the duration of the
neighborhood points of the click position can be calculated
based on the index of the specific value of ∆g(t). That is,
∆g(t) = 1 indicates the point begins to appear, ∆g(t) = −1
indicates the point disappears, and marking the time differ-
ence between the last appearance and the next disappearance
of the point on the click annotation frame is the duration time
∆t. Subsequently, the motion state of the clicked-instance is



determined based on the proportion of ∆t that occupies ad-
jacent T frames.{

static if ∆t
T > τ ;

dynamic otherwise.
(4)

where τ is the duration threshold. If ∆t
T exceeds the thresh-

old, it indicates that the local point cloud around the click
has a longer duration and is considered a static instance.
Conversely, if it does not exceed the threshold, it is consid-
ered a dynamic instance.

Click2Box. For static objects, dense points express com-
plete geometric structures, which supports the fitting of
high-quality bounding box pseudo-labels from the point
cloud distribution. Motivated by this observation, we
concatenate the neighboring points of multiple frames
{Nt}t∈[t−k,t+k] to obtain local dense points Dt for the time
step t. We perform DBSCAN (Ester et al. 1996) clustering
algorithm on Dt to generate several discrete point clusters.
We retain the cluster of points whose center is closest to the
clicked position and consider the points in this cluster as the
foreground points of the clicked instance. Finally, we per-
form a bounding box fitting algorithm (Zhang et al. 2017) on
the foreground points to generate a box-level pseudo-label.
We utilize Click2Box to infer box-level pseudo-labels Ab

from the click annotations of all static instances.

Click2Mask. For dynamic objects, we opt to leverage
only the single-frame point cloud Pt due to the long-tail dis-
tribution observed in aggregated points resulting from mo-
tion differences (Chen et al. 2022). Although the instance
shape and scale cannot be revealed by click-level labels,
the foreground points from click-annotated frame can still
provide reliable semantic information and coarse location
information. Consequently, instead of generating box-level
pseudo labels for dynamic objects, we produce mask-level
pseudolabels by extracting the foreground points in Pt. To
identify these foreground points, we employ the DBSCAN
clustering algorithm on raw point clouds, and select the clus-
ter with the center closest to the click location a mask-level
pseudo label. The resulting mask-level pseudo labels de-
noted as Am, are derived from the click annotations of all
dynamic instances.

Mask2Box Enhanced Mixed Supervised Training
In contrast to traditional 3D object detectors that are solely
reliant on box supervision, our approach delves into weakly
supervised detectors with mixed supervision. Inspired by
MixSup(Yang, Fan, and Zhang 2024), we re-engineered the
strategy for supervision allocation. However, the informa-
tion about mask-level supervision is limited, and it is chal-
lenging to achieve optimal detector performance. To address
this issue, combining with an iterative training, we introduce
a mask2box enhanced training strategy, which leverages the
high-confidence outputs from the last iterative detector to re-
fine mask-level pseudo-labels into more accurate bounding
box-level pseudo-labels, thereby improving the overall pre-
cision of the detection process.

Click
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Mask-level 
Pseudo-Label

High-Confidence 
Prediction
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Figure 3: An illustration of the upgrading strategy for mask-
level pseudo labels.

Mixed Supervised Training. Referencing (Yang, Fan,
and Zhang 2024), we redesigned the supervision assign-
ment strategy. For all box-level pseudo-labels Ab of size
Ab, we train the detection network to focus on its position,
shape, orientation, and semantics. For mask-level pseudo-
labels Am of size Am, the detector focuses solely on seman-
tics and the center of masks. Therefore, the loss function for
OC3D can be formulated as:

L =
1

Ab

∑
Ab

Lreg+
1

Ab +Am

∑
Ab+Am

Lcls+λ
1

Am

∑
Am

Lpos.

(5)
Lreg and Lcls are commonly used regression and classifica-
tion losses in 3D object detection. Lpos is the part that de-
couples the central position from Lreg. Since mask centers
are not accurate instance centers, we set the hyper-parameter
λ to reduce the weight of this part of the loss.

Mask2Box Enhanced Training. Mask-level pseudo-
labels provide only semantic and coarse localization infor-
mation, lacking a description of the instance shape. To com-
pensate for the information lost in mask-level pseudo-labels,
we use high-confidence bounding-box predictions to up-
grade mask-level pseudo-labels. As shown in Fig. 3, based
on mask-level pseudo-labels, we use the box fitting algo-
rithm (Zhang et al. 2017) to generate a temporary bounding
box (Temp. Box). Then, we calculate the IoU of the tempo-
rary box with all high-confidence predictions and return the
prediction box with the highest IoU:

Proposal = argmax
IoU

(IoUi =
Temp.Box∩li
Temp.Box∪li

). (6)

where li originates from all the high-confidence predictions.
If the point-level pseudo-label is within the proposal, then
the proposal is used to replace the point-level pseudo-label.
Conversely, the point-level pseudo-label is retained and will
be awaited for the next upgrade opportunity.

Experiments
Datasets and Metrics. We evaluated OC3D on the widely
adopted KITTI (Geiger, Lenz, and Urtasun 2012) and
nuScenes (Caesar et al. 2020) datasets. Remarkably, OC3D
achieves competitive performance with weakly-supervised
baselines that rely on accurate box annotations. For evalua-
tion, we adopt mAP and nuScenes detection score (NDS) as
the main metrics.



Method Venue Annotations 3D-Detection BEV-Detection
Type Cost Easy Mod Hard Easy Mod Hard

Voxel-RCNN (Deng et al. 2021) AAAI2021 Fully Supervised 100% 98.7 94.9 94.5 98.7 94.9 94.6

WS3D (Meng et al. 2021) PAMI2021 Boxes + Center Clicks 3% 96.3 89.4 88.9 96.4 89.3 88.9
MixSup (Yang et al. 2024) ICLR2024 94.9 92.7 90.0 94.9 93.0 90.4

SS3D (Liu et al. 2022) CVPR2022

Sparse Boxes 2%

98.3 89.2 88.3 - - -
CoIn (Xia et al. 2023) ICCV2023 96.3 86.7 74.4 96.3 88.4 75.6
CoIn++ (Xia et al. 2023) ICCV2023 99.3 92.7 88.8 - - -
HINTED (Xia et al. 2024) CVPR2024 98.5 91.6 90.3 98.4 92.9 90.6

OC3D++ - Sparse Coarse Clicks 0.2% 96.4 91.6 84.6 96.5 92.0 84.9
OC3D - Coarse Clicks 1% 96.6 92.5 91.5 96.7 94.1 92.0

Table 1: Experimental results on KITTI dataset compared with recent state-of-the-art label-efficient methods. We report results
of ’car’ with 40 recall positions, below the 0.5 IoU thresholds. ’Boxes + Center-Clicks’ denotes that in some scenarios, bounding
box annotations are retained, while in the rest, only the central position annotations are preserved. ’Sparse Boxes’ indicates that
only one bounding box annotation is retained per ten scenes.

Method Annotation mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

CenterPoint Fully Supervised (100%) 56.18 64.69 84.10 54.56 16.38 67.31 36.95 65.27 53.58 35.76 82.70 65.08

CenterPoint
Sparse Boxes (2%)

8.09 25.77 24.62 2.84 0.00 15.66 0.00 4.07 3.33 0.29 25.11 4.96
CoIn 12.47 33.79 38.70 6.85 0.00 20.67 7.81 11.51 2.85 3.36 34.85 8.50
HINTED 32.62 45.76 66.63 32.71 7.59 54.56 11.42 21.16 29.12 19.08 57.22 26.63

OC3D++ Sparse Coarse Clicks (0.2%) 24.88 38.12 56.37 23.47 1.10 33.30 3.43 16.18 24.67 8.81 54.42 27.00
OC3D Coarse Clicks (1%) 44.04 49.87 78.91 46.18 8.01 50.34 27.68 60.70 28.80 10.70 74.06 54.98

Table 2: The multi-class results on the nuScenes val set. ‘C.V.’, ‘Ped.’, and ‘T.C.’ are short for construction vehicle, pedestrian,
and traffic cones, respectively.

Comparison with State-of-the-art
Validation on KITTI. In Tab. 1, we conducted experi-
ments to compare our approach with state-of-the-art label-
efficient methods on KITTI. Following the mainstream ap-
proaches (Liu et al. 2022; Xia et al. 2023, 2024), we also
adopted Voxel-RCNN (Deng et al. 2021) as the base de-
tector. For coarse click annotations, the labeling time per
instance is approximately 1.2 seconds, which is about 2
times faster than center-click labeling and 100 times faster
than bounding box labeling. Despite employing a more
lightweight annotation form, retaining only coarse click
annotation, our OC3D still achieves comparable perfor-
mance with other methods. In the Car-3D detection task,
at the ‘Easy’ and ‘Mod’ difficulty levels, the gap between
our performance and the previous best is only 3.3% and
0.2%, respectively. Meanwhile, at the ’Hard’ difficulty level,
our method achieved the best performance. In the Car-
BEV detection task, at the ’Easy’ difficulty level, the gap
between our performance and the previous best is only
2.3%. Meanwhile, at the ’Hard’ difficulty level, our method
achieved the best performance. Especially, under conditions
of an extremely cost-effective sparse clicking, the proposed
OC3D++ demonstrates the capability to sustain consistent
performance.

Validation on NuScenes. We also conducted validation
experiments on the nuScenes dataset. To ensure a fair com-
parison, we follow the previous methods (Xia et al. 2023,
2024) to select the CenterPoint (Yin, Zhou, and Krähenbühl

2021) as the base detector. In Tab. 2, where OC3D achieves
performance comparable to the fully supervised baseline
method. This confirms that our SC3D still demonstrates
outstanding performance on highly challenging multi-class
tasks. In the experimental with sparse coarse click annota-
tions, the mAP of OC3D++ decreased. The reason is the
higher number of instances in the nuScenes, which poses
a greater challenge for sparse settings.

Conclusion
We designed an efficient annotation strategy called coarse
click annotation for 3D object detection and proposed a
weakly-supervised object detection method, OC3D, lever-
aging this approach. In the mixed pseudo-label generation
stage, we propose a novel method for dynamic and static
classification, and design the Click2Box and Click2Mask
modules according to the motion states of objects to generate
mixed pseudo-labels. Subsequently, in the Mask2Box en-
hanced mixed supervised training stage, We train the 3D de-
tector with mixed pseudo-labels and design the Mask2Box
module to obtain richer supervisory information. Exten-
sive experiments on KITTI and nuScenes have shown that
our OC3D achieves commendable performance with purely
clicks.

Limitations. The mixed pseudo-label generation stage
provides the detector with initial labels describing instance
geometry and location, but these rule-based labels lack the
quality of human annotations.
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